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INTRODUCTION 

In  the act of Congress transferring the meteorological 
work of the Signal Office to the Weather Bureau of the 
Department of Agriculture, approved October 1 , 1890, 
the duties of the service are thus summarized (1): 

The Chief of the Weather Bureau, under the direction of the 
Secretary of Agriculture, shall have charge of forecasting the 
weather; the issue of storm warnings; the display of weather and 
flood signals for the  benefit of agriculture, commerce, and naviga- 
tion; the gaging and reporting of rivers; the maintenance and opera- 
tion of seacoast telegraph lines and the collection and transmission 
of marine intelligence for the benefit of commerce and navigation; 
the reporting of temperature and rainfall conditions for the cotton 
interests; the display of frost, cold wave, and other signals; the 
distribution of meteorological information in the interest of ngri- 
culture and commerce; and the taking of such meteorological 
observations as may be necessary to establish and record the cli- 
matic conditions of the United States, or as are essential for the 
proper execution of the foregoing duties. 

To carry out the provision, “the display of * * * 
flood signals for the benefit of agriculture, commerce, ancl 
navigation; the gaging and reporting of rivers” the 
Weather Bureau has established some sixty-odd river 
district centers. These centers superrise the lvorli of 
about 900 substations, and issue forecasts and warnings 
of river stages to the public. 

It is conservative to  state that $3,000,000 worth of 
property is saved annually as a result of the Weather 
Bureau’s flood warnings.’ 

At the present time, empirical methods solely are used 
by the Weather Bureau in forecasting river stages ancl 
issuing flood warnings. I n  large rivers where the day-to- 
day changes are gradual these methods are very efficient, 
and it is doubtful whether any other methods based on 
theory, however elaborate, will add very much to tLem. 
As an example of the precision of the present methods, the 
following is quoted from Talman: “Thus in the flood of 
1903 the- exact time [when the crest would reach New 
Orleans was correctly foretold 28 days in advance and the 
prediction of the height of the crest was only 5 inches 
in error.” (2) 

I n  small streams, however, where the height of the 
water surface may change several feet in a few hours the 
present empirical methods are not so efficient. Contrast 
the precision of the New Orleans forecast just mentioned 
with a forecast for a station on a small river made recently, 
when a stage exceeding any that had occurred there for 
15 years was predicted when, as a matter of fact, the 

1 An excellent description of the Weather Bureau’s river and flood service is given in 

Further explanations are contained in a pamphlet of the U. 8. Department of Agricul 

These references despite the fact that in some ways they are not up to date, give a 

ch. X of “Meteorology” by W. I. Milham, New York, 1912. 

ture entitled “The Weather Bureau’’, Miscellaneous Publication No. 114. 

good summary of the river and flood service. 
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river rose only 1.3 feet, a bare one-fifth of the rise es- 
pected.2 

The reason for the great accuracy in predictions for 
large streams is the fact that for them the forecasts need 
not be made until the crest has pa,ssed some upstream 
gage; and the further fact that when an upstream gage 
reaches a certain stage then a gage farther downstream 
will, u t  n so much later time, reach a corre,sponding stage, 
m d  this relation can be worked out quite closely. In  
t,he small streams, either there may be no gage farther 
upstream or, if bhere is one, the time of flood crest travel 
is so short that it is not feasible to wait for the upstream 
gage reading; in each case, therefore, flood forecasts must 
be based on the rainfall. In  the large streams, about the 
only things that cause a flood forecaster to be appreciably 
in error are, the bre.nking of n levee or dam, or some other 
similar engineering or flood-protection work, and the erratic 
movements of ice. In  a sniall stream where the flood 
forecasts are based on rainfall, not only are there these 
items to contend with but also the dryness and other 
c.onclitions of t,he soil on which the rain falls; possible 
unequal distribution of rainfall over t.he watershed; the 
presence of a snow cover, if any; the effect of evaporation 
and transpiration; and, of course, the basic factors, i. e., 
the depth and the rate of the rainfall. 

Evidently, then, a study of the underlying principles 
of the relation between rainfall and consequent run-off 
ancl stresm flow ought to improve the efficiency of the 
Weather Bureau’s flood warnings in the smaller streams. 
Accordingly a series of articles, of which this is the first, 
has been prepared on this subject. 

It is well to bear in mind the limitations of any system 
of flood forecasting. Near the headwaters of a stream, 
flood crests are reached very soon after the flood-produc- 
ing rain stops. Indeed, by the time a rainfall observer 
in the upper portion of the drainage basin has telegraphed 
the rainfall to a river district center, and the center in 
turn has tabulated such reports from the several stations 
in a watershed, determined the forecast, and issued it to 
the public, the flood crest may already have passed. 
Thus any system of flood forecasting based upon rain- 
fall, however exact, is of no practical use near the head- 
waters of streams. Again, for the large streams the 
simple empirical methods are to be preferred to any com- 
plex method based on theory, when the use of the latter 
effec,ts only a very slight ain in the accuracy of the fore- 
casts. Hence the theory f eveloped in this series of articles 

2 I t  also is interesting to know that about 3 weeb  later, rains not quite so heavy oc- 
curred above this station, and on account of the previous experience no flood warning 
was issued. However, the river reached a crest 0.5 foot over the flood stage and caused 
slight damage. 

In  another instance. on a different river, when the gage reading, we8 13 feet a forecast 
was issued for a crest stage between 20 and 21 feet; however, the river fell. 
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is practically applicable only to that reach of a river that 
is comparatively near the headwaters, but not too near. 

Yet even for these portions of the rivers of the United 
States it is believed that it is possible to improve greatly 
the accuracy of the Weather Bureau’s flood warnings, 
and thus bring about the saving of much property 
annually. 

The 
first group deals with the development of the mathemat- 
ical theory of the relation between rainfall, run-off, and 
streani flow. The second applies this theory to some of 
the rivers of the United States, and shows how it  is 
possible to forecast floods accurately from rainfall. The 
third group shows how i t  is feasible to construct nomo- 
grams from which i t  is possible to read off resulting river 
stages from given mitial conditions of rain, evaporation, 
and soil capacity. It might be well to point out here 
that the purpose of the articles in the third group is to 
develop a ready method of applying the theory; for the 
practical value of any theory would be vitiated if from 
1 to 6 hours of tedious computation were required, after 
the rainfall observer’s reports were received, before a 
flood warning could be issued. 

This, 
the first, treats the simple case in which the drainage area 
is rectangular; evaporation and transpirationareneglected; 
the rate of rainfall, the velocity of the water in the stream, 
and the condition (dryness) of the soil are constant; 
and where no snow cover is present. The second article 
will deal with irregularly shaped drainage areas, the third 
with evaporation (transpiration is a special case of 
evaporation), the fourth with varying rates of. rainfall, 
the fifth with varying conditions of the soil, the surth with 
varying velocity of water in the stream, and finally in 
the seventh article, the last of the first group, various 
combinations of the above factors will be treated.a 

The f i s t  part tells 
in words what is accomplished mathematically, by 
symbols, in the second part. Those readers who are 
interested in flood forecasting from rainfall, or in the 
relation between rainfall, run-off, and stream flow, but 
who do not care to follow the mathematical formulas, 
need not read the second art of any article. However, 

also read the fist part of each article. The two parts of 
some of the articles are subdivided into sections. 

The articles in this series are in three groups. 

There will be seven articles in the first group. 

Each article consists of two parts. 

those who intend to fo 8 ow the mathematics should 

rainfall. The rainfall is a length; the Weather Bureau 
has always measured rainfall in inches, and in these 
papers that practice is followed. The depth of rain 
water falling upon the ground per unit of time at any 
given time is termed the rate of rainjall. The rate of 
rainfall is depth per unit of time, and is here expressed in 
inches per hour. Mathematically, the rate of rainfall is 
the first derivative of the rainfall with respect to time. 
The volume of rain water which falls upon a given area 
in a given interval of time is termed the volume of rainfall. 
The volume of rainfall is length times area (i. e., volume), 
and is here expressed in mile-inches in preference to 
acre-feet-the latter term being common in literature on 
hydrology. The mile-inch is here defined as the volume 
of water which will cover 1 square n d e  to the depth of 1 
inch, The mile-inch is the most convenient unit to use 
for the volume of rainfall since dfainage areas are most 
commonly . -  expressed in square mdes and the rainfall in 
mches. 

Consider further that part which runs off. The run- 
off, as above defined, will be expressed in inches; this 
is in keeping with present usage in hydrology. The rate 
of run-off is expressed in inches per hour rather than in 
cubic feet per second per square mile. It is necessary to 
introduce two more terms when dealing with areas other 
than a unit area. The volume of water which runs off a 
given area in a given interval of time will be termed the 
volume of run-03. The volume of run-off is length times 
area, and (as in the case of the volume of rainfall) will be 
expressed in mile-inches. The volume of water running 
off a given area per unit of time a t  any given time will be 
termed the volume of rate of run-of .  The volume of rate 
of run-off is length per unit of time times area, and will be 
expressed in mile-inches per hour in preference to cubic 
feet per second. 

The 
quantity of water flowing past a given cross section of a 
stream per unit of time a t  a given tinie is termed the 
discharge. The quantity of mater which flows past a 
given cross section of a stream in a given interval of time 
is termed the volume of discharge. The volume of dis- 
charge is volume; the discharge is volume per unit time. 
Mathematically, the discharge is the first derivative of 
the volume of discharge with respect to time. Discharge 
is expressed in the same units as the volume of rate of 
run-off, i. e., in mile-inches per hour. Volume of discharge 
is expressed in the same units as the volume of run-off, 
i. e., in mile-inches. 

As in the case of the term “run-off ”, i t  is unfortunate 
that the term “discharge” has been used in both of the 
above senses in the literature on hydrology. 

If we confine our attention to a small parcel of ground 
which is drained by a single outlet, we may neglect the 
time required for the water that .runs off to flow from 
where the rain falls to the outlet; m this case the volume 
of run-of from the whole small parcel of ground is synon- 
ymous with the volume of discharge a t  the outlet during 
any interval of time; and also the volume of rate of run-of 
is synonymous with the discharge. 

In section 1 of part 11, two equations are developed from 
fundamental principles. Equation (1) expresses the 
volume of rate of run-off as a function of time while the 
rain is falling. Equation (2) expresses the volume of 
rate of run-off as a function of time after the rain stops. 
In equation (2) evaporation is ignored. Evaporation will 
be considered in a later article. 

In  section 1, part 11, there is also a discussion of a cer- 
tain constant of proportionality introduced in the devel- 
oDment of eauations (1) and (2). 

Consider now the water flowing in a stream. 

PART I 

S E C T I O N  1.-THE D I S C H A R G E  FROM A SMALL A R E A  

When rain falls upon the ground, part of it soaks into 
(or remains upon) the soil, and part runs off. Consider 
now that part which runs off. The volume of water run- 
ning off a unit area per unit of time at an given time is 

of water 
which runs off a unit area in a giyen interval of time is 
termed the run-03. The run-off IS a volume per unit 
area; the rate of run-off is volume per unit area per unit 
time. Mathematicdy, the rate of run-off is the &st 
derivative of the run-off with res ect to time. 

the term “run-off” is used in both the above senses. It 
is even more confusing since the term “run-off” is also 
used for the volume of run-03 from a given area. 

Next consider the rain falling upon the ground. The 
depth of rain water, as a horizontal sheet, which falls upon 
the ground in a given interval of time is termed the 

here termed the rate of Tun-of. The voume s 

Unfortunately, in the existing P iterature on hydrology 

- - 
: Unforeseen circumatanoes may necessitate changing the order of some of these articles. . _  . _  
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Volume of rainfall.. . - ------..-. 

Volume of run-off __-. .--- -.-..-. 

Volume of rate of run-off ..-.____ 
Discharge _____- - - -  - -  --.---...--- 
Volume of discharge. _... .... . -. 

It is important to distinguish carefully between tlie 
terms discharge nnd colume of Tnte of run-03. When we 
are dealing with the volume of rate of run-off then equa- 
tions (1) and (2) are true regardless of the size and shape 
of the drainage area. When we are dealing with discharge, 
equations (1) and (2) will be true only when the drainage 
area is small. The distinction between discharge and 
volume of rate of run-off will be more clearly brought out 
in section 2. 

For convenience, and as a summary, all of the terms 
defined in this section, together with the units in which 
they are expressed, are here tabulated. 

A R =  i l r d t  ._._.________.__ Mile-inches. 

A zdt-.. _._.._ - _ _ _ _  ~ _ _  _._. Do. 

Az=Z _______..____.__._____ Mile-inches per hour. 
u .-__._.___.._..___._.--.---. Do. 

s: s: 
s:  dl _ _ _ _  _____..______ _ _ _ _ _ _  Mile-inches. 

I I 
Units in which 

expressed 

Inches per hour. 

Inches. 

Do. 
Inches per hour. 

SECTION 2.-THE DISCHARGE FROM A RECTANGLE 

The primary concern of these articles is l o  develop a 
scheme urhe,reby the height of flood crest,s can be predic.ted 
from the rainfall during a storm and attendant modifying 
factors. The height of a flood cre,st is a quantity which is 
easily observed and measured. Now, the discharge of a 
stream at a given cross-section may be regarded as a 
function of two things-one, the gage height of the 
stream at this cross-section; the other, whether the st,rea.m 
is rising or falling, i. e., tlie rate of change in t,hat height, 
for it is well known that, the discharge of a stream for a 
given gage height is greater when the stream is rising than 
for the same gage height, when the shreani is falling. 
Therefore, a t  the time of a crest the discharge of a stream 
at a given cross-sectmion is a function of the height only, 
for then the stream is neither rising nor falling, i. e., the 
rate of change in height is zero. We may also say that 
the flood crest height is a function of the maximum dis- 
charge. Thus if the maximum discharge could be pre- 
dicted, then the flood crest height could be predicted, and 
vice versa; assuming, of course, that the functional rela- 
tion betwee,n the maximum discharge and flood crest 
height is known. 

The functional relation between maximum discharge 
and flood crest height will be taken up in the second group 
of papers in the series; for the present we shall be con- 
cerned with establishing the relation between the rainfall 
during a storm (and other attendant factors) and the 
niaxinium discharge. 

The relation between the rainfall during a storm (and 
accompanying factors) and the consequent volume of rate 
of run-off is readily obtained, as the reader may observe 
later; but the relation between the rainfall and the dis- 
charge, in general, is exceedingly involved. Therefore, in 
order to  make this relation at  all t'ractable, simple assump- 
tions are made. What actually happens in Nature is 
replaced, a t  first, by a reasonable, workable ideal. Thus 
in section 2 of part I1 the relation between rainfall and 
discharge is worked out on the assumptions that: (1) 

there is no evaporation, (2) the rainfall and also the rate 
of rainfall are const,ant, for a given storm, (3) the drainage 
area is rectangular, (4) the velocity of the water in the 
stream is constant, ( 5 )  the condition of the soil in the 
drainage area is uniform, (6) there is no snow cover on the 
soil. Now such ideal condit,ions never occur in Nature; 
and in later papers the relation between rainfall and dis- 
charge will be obtained when the above restrictions are 
removed one b one. Here again, in order to make this 

to relatively simple cases as the assumptions enumerated 
above are removed. 

For a large drainage area, the time required for the 
wrtt8er that runs oft' to flow from where the rain falls to 
the outlet is appreciable, and, naturally, varies with the 
distance from the outlet. For this reason the volume of 
nin-off and the volume of discharge during a given inter- 
val of time are by no means synonymous. Neither is the 
volunie of rate of run-off, in general, identical with the 
discharge. However, after a prolonged period without 
any rain over a given drainage area, or in other words, 
when a steady stat8e has been reached, the rate of ruu-off 
becomes constant (that is to say, the rate of run-off 
changes but little with respect to time) and therefore the 
volume of rate of run-off becomes equal to the discharge. 
Moreover, if the interval of time is taken to begin at  one 
steady state and end a t  another steady state, then the 
volume of run-off equals the volume of discharge.' 

I n  section 3, part 11, equation (7) gives the time of the 
flood crest (mamniuni discharge) in terms of the duration 
of t,he rain and ot,her constants. Equation (8) gives the 
maxiinum discharge in terms of the rate of rainfall, the 
time of maximum discharge, the duration of the rain, and 
other constants. 

PART I1 

problem tracta t le it is necessary to confine the treatment 

FOREWORD 

In preparing a paper which contains tedious mathe- 
matical developments, the writer is confronted with the 
question of how fully these developments should be given: 
If each is given in full, the cost of publicat'ion is unduly 
increased, and moreover the reader is likely to receive the 
false impression that the paper is very complicated. On 
the other ha.nd if the developments are condensed too 
much, by the omission of intermediate steps or by inade- 
quate explanations, the reader may be unable to follow 
the paper even though he has a good grasp of the mathe- 
matics used. In  view of the fact that the prediction of 
flood crests is a very practical problem, it has been deemed 
advisable to go to much pains in order to make the mathe- 
matical developnients clear. Accordingly the following 
procedure is used in this paper: In  deriving equation (l), 
the symbolic expression for each intermediate step is 
given, as well as a verbal explanation. For the remaining 
equations, the symbols for the more simple steps are 
omitted. It is believed that all readers who can follow the 
development of equation (1) wiU be able to supply all the 
omitted steps in the rest of the paper from the e-uplana- 
tions given. 

The present paper involves no mathematics beyond 
elementary calculus. 

SECTION 1 

Equations are here developed for the relation between 
rainfall and the rate of run-off, on the assumption that 
the rate of run-off a t  any given time is proportional to the 

+ I t  Is worth noting that for an Interval beglnnlng with a steady state hut onding with 
an unsteady stute. the volume of run-OR equals the sum of the volume of discharge and 
tho volume of water In the stream at the t h e  that the Interval ends. 
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rainfall remaining with the soil at  that time. It is 
believed that this assumption, which is the basis for all 
the equations developed in this series of papers, is a very 
close approximation to, if not precisely, what occurs in 
Nature. 

Let t be the time, and let t=O when the rain begins; 
let R be the rainfall that has fallen up to time t ,  and 
put dRjdt=r. Consider now the case when T is constant. 

Let A be the area of a parcel of ground. Now the 
volume of rainfall remaining with A a t  any time, meas- 
ured from the beginning of the rain, is a function of that 
time; that is to say, the volume of rainfall which has fallen 
up to time t ,  less the volume of water which to then has 
run off, is the volume remaining and is a function of the 
time t ;  in symbols: 

o r d t  - @t =4 ( t )  , 

where Z is the volume of rate of run-off, and 4(t)  is the 
volume remaining. 

The fundamental assumption is: cZ=+(t) ,  w-here c is 
an unknown const,ant of proportionality. Therefore we 

can write cZ= Ardt-  Zdt ,  and by differentiation we 
get cdZ=Ardt-Zdt, lsd t'hen solving for dt, ~ ~ = d t ,  cdZ 

whence by integration t=-c log ( A r - 2 )  -c log I<; 
dividing by -c and combining terms, we have --= 

log K(Ar-2). I t  follows from 6he definition of a loga- 
rit,hin that this last equation can be written 

t 
C 

t __ 
e c=K(Ar -Z) ,  

where e is the base of natural logarithms. 
To evaluate the constant of integration K,  set Z=O 

when t=O; i. e., we assume that when the rain begins 
there is no water flowing off. Then 

1 
*4r l=KAr or K=-, and on substituting this value of K 

we have 
2 .  t _- 

e C = 1 - -  
AT' 

hence, on solving for 2, 

Z = A r  ( 1-e 4) . (1) 

As t +a, then 2 + AT, which means that if the rain 
be prolonged wit,hout limit a state will be reached when 
there is just as much water flowing off the area as there is 
rain falling upon it. This is exactly as would be expected, 
because when the soil is completely saturated with water 
a sheady state will be reached soon thereafter, when all 
the waher which falls as rain must run off as surface water. 

However, it might be argued that when the soil becomes 
completely saturated with water a greater volume of 
rain will remain upon the soil than previously soaked 
into the soil, and that equation (1) will not represent the 
behavior of the volume of rate of run-off after the soil is 
completely saturated. To investigate this, consider a 
lake or a pond. Assume that no water flows into the lake 
from the surrounding land. Rain falling upon such a 
lake will behave precisely as rain falling upon saturated 
level ground. Assume that the lake has one outlet, and 

that this outlet is sufficiently wide so that the discharge 
increases linearly with increase of the depth of the water 
flowing in the outlet. At the beginning of the rain we 
assume the lake to be just full, that is, there is no water 
flowing in the outlet. Under these conditions the heaviest 
rains of record would not cause the depth of water flowing 
in the outlet to reach a large value. Therefore the as- 
sumption that the discharge increases linearly with 
increase of depth of water flowing in 6he outlet is certainly 
valid. 
Let h be the depth of water in the lake (and also in 

the outlet), measured from the height of the surface of 
the lake when the rain be ins, a t  the time t. Let y be 

let A be the area of the lake. 
Now the volume of rainfall which has fallen up to 

time t ,  less the volume of water which to then has flowed 
away, is the volume remaining upon the lake; or in 
symbols: 

k r d t - - S f Z h d t = A h .  

the discharge and let y=2 a where E is a constant. Also 

Then by differentiating we get : 
d r d t  --Ihdt =Adh;  solving for dt and integrating, 

A d C t=---log (AT-'&) -=logK. No~~mul t ip ly ingby -- 
C C A' 

and combining terms, it follows from the definition of a 
logarithm that we can write: 

e - f t  =I<(Ar-&). 
As stated in words above, when t = O ,  then h=O, wlicnce 

Therefore on substituting this value of K and 

- 

- 

solving for h, we have: 

Multiplying by c and recalling that &=y, we can write 

This last equation is of exactly the sanie form as equu- 
tion (1) and was derived not upon the assumption that 
the rate of run-off a t  any given time is proportional to the 
rainfall remaining upon the lake at  that time, but upon 
the assumption that the discharge is proportional to the 
depth of water in the outlet. Under the stated conditions 
the depth of wat,er in the outlet is never v e y  large, and 
the assumption that the discharge is proportional to the 
depth of water in the outlet is then certainly valid. 

From the above discussion of rain falling upon a lake, 
it will be clear to the reader that equation (l), which is 
based on the assumption that the rate of run-off at  an 
given time is proportional to the rainfall remaining wit 
the soil a t  that time, is rigorously true when the soil is 
completely saturated with water. However, equation (1) 
may not represent exactly the volume of rate of run-off 
when the soil is not completely saturated, because certain 
factors, e. ., capillary action and osmotic pressure (in the 

have been ignored. For the primary 
purpose of these articles it is believed that equation (1)  is 
sufficiently accurate, certainly so as a first approxima- 
tion, whether all the rain soaks into the soil, all remains 
upon the soil, or part soaks into the soil and part remains 
upon the soil. 

iYl 

roots of pants),  Y 
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The constant c, equation (1)) depends upon the nature 
and condition of the soil. It d0e.s not vary during any 
partic.ular rain but does vary froni rain to rain, depending 
upon how much inoist,ure the soil contains a t  t,he begiu- 
ning of the rain and whe.ther the ground is freshly t,illecl 
or fallow, covered with vege.t,ation or bare, the kind of 
vegetation if covered, and whether or not the ground 
is frozen. Moreover, t8he constant c will change from 
area to area, depending upon t,he type of soil. 

The constant c may be considered as consisting of two 
parts, say c’ and c ” ;  one, c’, due t o  the fact that the soil is 
pervious and hence water soaks into the soil; and the 
other, c”, owing t80 the fact, that8 not all the rain which 
does not soak into the soil flows off instanbaneously, but 
a part remains upon the soil. When c is thus divided, 
the second part c” not only remains constant duiing any 
particular rain but also from rain to rain for a given small 
are,a. The part c” depends of course upon the prec,ipitous 
nature of the land, being close to zero for st#eep slopes. 
Over generally level land, especially if many sloughs or 
hollows are present, c” may have a rather high value. 
Neither c’ nor c” varies greatly from area to area so long 
as all the t,erritory in question is of the same geologica,l 
forma tion. 

as a function of the time while the rain continues. 
Equation (1) expresses the volume of rate of run-off 

It 
may be termed the equation of rise. When the rain 
stops, the rate of run-ofl’ immediately decreases; equation 
(1) then no longer applies, but an equation of fall which 
will now be developed. 

Let Zo be the volume of rate of run-off from the area 
A a t  the time the rain stops. Let t’=t-to where to is 
the duration of the rain. (Also, since t=O when the 
rain begins, to is the time that the rain stops.) Moreover 
to is a constant; alto when !=to. then t’=O and 2=Zo. 

As in the equation of rise, it is assumed that a t  any 
time the rate of run-off is proportional to the rainfall 
remaining with the soil. That is to say, after the rain 
stops, the volume of rate of run-off a t  any time t is pro- 
portional to the volume which fell as rain, less the volume 
which ran off while it was raining, less the volume which 
has run off during the interval from the time the rain 
stopped to the time t .  Now the volume which fell a; 
rain is a constant, viz. AR, and the volume which ran off 
while it was raining is also a constant, say F(to); whence 
we can write the previous sentence in symbols, thus: 

c2=AR--F(to)-JZdt.  to (It may be well to point out 

that in this last equation the constant c has the same 
value for a given piece of ground asi t  had a t  the begkning 
of the rain, as in equation (1); and that F(to)  is the 
integral of equation (1) between the limits 0 and to.) 
Then, since the first two terms on the right-hand side of this 
last equation are constants, we have by differentiating: 
cdZ= -2dt. Clearly, dt=dt’. Therefore cdZ= -Zdt‘; 

t 

and on dividing by CZ and integrating, --t‘=log C KZ, 

whence from the definition of a logarithm we have: 
t’ 

K Z =  e- e.  
To evaluate the constant of integration K,  put Z=Zo 

1 
when t’=O; t h n  KZ0=1 or K=-, and 

2 0  

1’ -- 
Z=Zoe e ,  

which is t,he equation of fall. 

3 19 

(2) 

SECTION 2 

As stated previously, equations (1) and (2) when 
regarded as expressing the volume of rate of run-off will 
be correct regardless of the size and shape of the drainage 
area. When regarded as expressing the discharge, 
equations (1) and (2) are correct only when the drainage 
area is small. 

Consider now a large drainage area that is rectangular. 
Let TT7 be the width and L be the length of the rectangle. 
(See fig. 1.) Let the gaging station be a t  the origin, and 
let the river coincide with the X-axis. Let 2 be t,he 
distance of each small (infinitesimal) element of area 
above the outlet (gaging station). Let v be the velocity 
of the moving surface water, and consider v to be constant. 
Let y be the discharge a t  time t a t  the gaging station, and 
let t=O when the rain begins. Assume that the river is 
dry when the rain begins. Each infinitesimal area above 
the gaging station may be considered as contributing .an 
infinitesimal portion to the discharge y a t  the gaging 
station. At time t each infinitesimal area contributes to 
y not its discharge a t  time t but its discharge a t  the time t 
diminished by the time required for its water to flow to 

1-L- 
id.1 

I X RWer 

The gaginq station is at the  origin “0” 
The r i v e r  coincides with the  X-axls 
Distances fo the r ight  o f  0 ar8 positive 
The r iver  flaws t o  t h e  le f t  

Figure I 

the gage. The time required for the water from an 
infinitesimal strip, Wdx, to flow to the gage is x/v, where 
x is the distance of the infinitesimal strip above the gaging 
station. Hence, it follows from equation (1) that, at  
time t ,  each infinitesimal area contributes a discharge of 
WT[~-~-$(~-?)]~X to the discharge y a t  the gaging 
station. Now, y is the sum of the discharges from all of 
the infinitesimal areas above the gage and is therefore 
the integral of the above expression. If the interval from 
the beginning of the rain to the time t is so small that the 
water from the upper portions of the drainage area has 
not had time to reach the gage, the upper limit of the 
integral is not the length of the drainage area L but is 
that value of x such that t=;, 1. e., it is that value of x 
such that the water from distance x has had just suEcient 
time to reach the gage. Hence, integrating the above 
expression from 0 to tu, 

(3 1 
When t=O 

x .  

’y= ~ j v [  t -c  + ,e-:]. 

Equation (3) expresses y as a function of t. 

t,hen y=O, and when t=AEthen V 
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L Equation (3) holds only on the range 0 S t 5 -9 with An equation for the range toS t S  
V 

the further restriction that t 5 to. It should be noted 
that t is not restricted to this range for any mathematical obtained. (It is supposed that to>:). If (l-i)<to tho 
reasons, but because of the physical nature of the problem. 
During the interval 0 the discharge at  the gag- contribution of the area Wdx to the discharge at  the gag- 

ing station is 
ing station, y, is increasing from two causes: first, the soil 

dy = Tj7r[ 1 -e -+  ( - : ) ]dx ,  in the drainage area is approaching the limit of its capac- 
ity for water, hence a greater and greater portion of the 

water; secondly, the urea which contributes to y is increas- 
rain falling upon the drainage area is flowing off as free 

+g. As soon as the whole drainage area above the gage 
is contributing to y, then y increases from the first cause 
only. I 

L t 5 

while if > t o  then the contribution of the area 1Vd.r is 

Jy=I17r[ l -e-qe-31 -i+&.* 

L 
V 

Suppose t 2 - and also t S to. Then integrating the 
same expression as before, from 0 to L now, 

(4) 

Equation (4) expresses y as  a function of t and holds on 
< with the restriction that E t O .  In  

other words, as long as i t  continues to rain, equat,ion (4) 
applies. When t=- equation (4) reduces to equation 
@a), and when t=to equation (4) becomes: 

the range L <  - V 

L 
V 

Equations (3) and (4) are equations of rise. An equa- 
tion of fall will now be derived. Suppose that t> 
(to+ --). Then it follows from equation (2), by reasoning 
similar to the above, that 

L 

in which expression the product Wr [ 1 - e -q dx is the dis- 
charge from the infinitesimal strip W h  a t  the instant 
that the rain stops. Whenc.e, by carrying out the indi- 
cated integration, 

[ -$I [ ; y=E7r 1-e cv e 

Then on putting t’=t-to: 

Equation (5) holds on the range to+&, a. When V 

L 
t=to+- equation (5) becomes: V 

Also when t= a then y=O; that is to say, when t is taken 
sufficiently large the discharge ceases. 

Consider the time t ,  and select xo as the value of x such 

that t-- =to, i. e., xo= (t-to)v. 

Then: 

X 
V 

X 
But since xo= (t-to) v and t - ; = f o  the above reduces to: 

L Equation (6) holds on the range to5tSto+i;. When 
f = t o  equation (6) reduces to equation (4a), and when 

t=t~+; equation (6) reduces to  equation (5a). Equa- 
tion (6) may be considered as a transition between equa- 
tion (4) and equation ( 5 ) .  In equation (4) the contribu- 
tions from all of the infinitesimal areas are increasing; in 
equation (5) the contributions from all of the infinitesimal 
areas are decreasing. Between these two cases lies 
equation (6), where the contributions from part of the 
infinitesimal areas are increasing while the contributions 
from the remainder are decreasing. 

The time of the maximum discharge, i. e., the time of 
the flood crest, may be found by obtaining the first 
derivative of equation (6) with respect to t and equating 
i t  to zero. Thus: 

L 

Designate the time of the crest stage by t , ;  then: 

t. 
multiplying by e e  , and transposing, 

t l -  L h  
e c =,co + e  -1, 

whence 
L A  

tc=c log (eG+ec-1). (7) 
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Setting t=t ,  in equation (6), and noting that this 
equation can be written 

it follows that the maximum discharge, y, ,  is given by 
the equation: 

yc= wr [ L - ( t ,  - 2,) V I .  (8) 

Equations (7) and (S) were derived from equation ( 6 ) ,  
and in turn equation ( 6 )  was developed on the assunipt,ion 

L that to>T- The question arises whether equations (7) 

and (8) hold when to<,. Suppose that to<,. Then 
equation (3) will hold only on the range 05 t 6  to because 
as soon as the rain stops (when t=to)  the contributions 
from the portions of the drainage area near t,he gage a t  
once begin to decrease, and if to<- the contributions 
from the upper portions of the drainage area have not yet 
reached the gage so that equat,ion (6) does not apply 
either. When t>to the contributions from the lower part 
of the drainage area are decreasing, and the discharge at  
the gaging station is given by: 

L L 

L 
V 

where zo is that value of x such that (t-tO)v=xo, and 
where t' = t  -to. Whence: 

and on putting zo= @-to)  v, 

or [ { -4 -+(t-h)}] y = W r v  to+c e c - e  (9) 

L Equation (9) holds only on the range t o 6  t $  -. When 
2, 

t=to equation (9) becomes: 
b 

y =  wm[ to+c[e- 7- l } ] ;  

L and when t=--  equation (9) t,akes the forni: 
V 

[ { -4 - + ( + - l o ) } ]  y = W r v  to+ce  " - e  

Equation (9) does not have a maximum within the 
range for which it holds, be,c,ause its derivative is 

and on putting this derivative equal to zero we obtain 
t = m ,  which is beyond the range for which equation (9) 
holds. 

Now when t=to equation ( 3 )  reduces to equation (sa), 
and also when f = ;  equation (6 )  reduces to equation (9b). L 

Thus equation (9) is a transition between equations ( 3 )  
L L and ( 6 ) ;  and when to<; and f>u the discharge is given 

by equation ( 6 ) .  As equation (9) has no maximum it 
follows therefore, whether t o= iJ  that equation (7) gives 
t8he time of the crest, and equation (8)  gives the maximum 
discharge. In other words, regardless of how short or 
long the rain lasts, equations (7) and (8) apply. 

A method of showing that equat,ions (3), (4), (5), and 
( 6 )  are correct is to integrate them between the limits of 
the respective ranges for which they apply, and ascertain 
that the sum of the four integrals thus obtained is equal 
to the volume of rainfall which occurs over the drainage 
area. 

In  carrying out the above procedure we first obtain 
L the volume of discharge for the period from t = 0 to t = - 

by integrating the right-hand side of equation (3) with 
respect to t ,  thus: 

V 

In a similar manner we integrate the right-hand side of 
L equation ( 4 )  with respect to t between the limits ; and 

to, for the volume of discharge from the time to the time 
to, and find this volume of discharge to be 

(B) 
Likewise for the period from t=to to t=to+A, 8 the inte- 

gration of the right-hand side of equation ( 6 )  with re- 
spect to  t betwe,en these limits gives 

+ 2c2ae (C)  

Finally, integrating the right-hand side of equation (5) 
L for the. period t=to+- bo t= co (at the time t= m the dis- 

charge a t  the gaging station has rec.eded to its value a t  
t8he. t,ime that the rain be.gan, vie., y=O) we get: 

8 

The sum of expressions (A), (B), (C), and (43) is 
WLrt, and is the volume of discharge during the interval 
between the time t=O (when the rain began) and the 
time t = m  (actually when the river again becomes dry). 
It will be noted that the volunie of discharge is the area 
of the basin times the rate a t  which the rain falls times 
the duration of the rain, and is the volume of rainfall. 
This result is exactly what should be expected when 
emporation is neglec,ted. 

Espressions (A), (B), (C), and (D) result when it is 
L assumed that to> -. In  a similar nitinner we can obtain 

other expressions from equations (3), (9), (6)) and (5), 
2, 



322 MONTHLY mEATHER REVIEW SEPTEMBER 1934 

L and show that when to<;- the volume of discharge equals 

WLrto. 
In the above development it was assumed that the 

river was dry when the rain began. Actually this condi- 
tion seldom occurs in nature. However, it will be clear 
to the reader that this assumption was made for simplic- 
ity, and was not a t  all essential for the above develop- 
ment. If the river is not dry a t  the time the rain begins, 
then the discharge a t  time t is given by the sum of the 
right-hand side of one of equations (3)) (4)) ( 5 ) )  (6), or 
(9) (the one whose range includes t )  and the discharge 

when the rain begins. Obviously, it is necessary to 
assume here that the river is at  a steftdy state when the 
rain begins. 
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THE SNOW SURVEY AS AN INDEX TO SUMMER PRECIPITATION 
By 0. W. MONSON 

[Montana State College Agricultural Experiment Station, Bozeman, June 1934) 

The successful prediction of rainfall, whether it be a 
single storm or the accumulation for the entire season, 
involves a knowledge of where the rainstorms originate 
and the paths they follow. The exact origin of the rain 
that falls a t  a given place cannot be definitely traced, but 
it is the opinion of reliable authorities that as we atlvnnce 
inland from the ocean the percentage of the moisture in 
the air which originates directly from the ocean becomes 
smaller. 

The following is quoted from “Forests and Wrtter in the 
Light of Scientific Investigation,’’ by Eaphael Zon: 

The precipitation over the land does uot depend solely on the 
amount of water brought as vapor by the prevailing winds from 
the  ocean. * * * The moisture-laden currents soon lose the 
moisture which they obtain directly from the ocean, but in moving 
farther into the interior absorb the evaporation from the land. 
Hence, the farther from the ocean the greater is the proportion 
which evaporation from the land forms of the air moisture. 

Adolph Meyer says: 
It is a common misconception tha t  almost all of the rain which 

falls on the land comes from moisture evaporated from the ocean. 
As a matter of fact, the greater portion of the rain which falls in 
the United States is water reprecipitated after having fallen as rain 
(or snow) and having evaporated from the land area. (Elements 
of Hydrology.) 

According to these authorities, much of the water 
which falls as rain at inland points has been evaporated 
from the residual of previous precipitation not accounted 
for by run-off or deep percolation. Therefore, the amount 
of precipitation that occurs a t  a given place should depend 
to a great extent upon the moisture conditions on the 
lands over which the prevailing winds a t  that point blow. 
Moisture is picked up from lakes, reservoirs, streams, snow 
fields, and from swamps and other moist lands. How 
much is contributed by each should depend, among other 
things, upon its relative extent. 

On the theory that conditions which aflect the extent 
of one of these sources will affect all in about the same 
proportion, a preseason measurement of the extent of one 
or more of the above-named sources of moisture should be 
an index to the amount of summer rainfall a t  various 
places located in the path of the moisture-bearing winds. 

To test this theory the writer made comparisons 
between the water content of the snow cover on the water- 
shed of Swiftcurrent Creek of the St. Mary River c!rainage 
basin measured early in May and the amount of rain 
occurring during April, May, June, July, and August a t  
Havre, Geraldine, and other places located eastward from 
the snow fields. See figure 1. 

1 Contribution from Montana State College, Agricultural Experiment Station. Paper 
No. 40, Journal Series. 

The mt,er content in inches of t,he snow cover in the 
Swiftc.urrent cirque of the St,. Alary River Basin was 
plott,etl for t,he 12-year period of record from 1933 to 1933, 
inclusive. The summer rn.infnl1 in inches for the several 
pla.ces nientioned was plot,t,ed for the s:me period, a.nd the 
wat)er cont,ent c,urm \VRS then compared with each rainfall 
curve bo discover if m y  c.orrela t,ion existed. 

A n1arke.d similarity wa,s observed in the fluctuations 
when t#he water-c.ontent curve was compared with the 
rainfall curves for Havre and Geraldine, as shown in figure 
2. The rainfall record a t  Havre and Geraldine during 
April, May, June, July, and August and the water content 
of the snow cover in the Swiftcurrent basin nieasured on 
h h y  1 of each year are given in table 1. 

Correlat’ion coefficient,s calculated between the water 
condent of t,he snow in the Swiftcurrent ba.sin and the 
rainfall during April 1 to August 31 a t  Havre and a t  
Geraldine give values of 0.72 for Harre and 0.71 for 
Geraldine, which is n high degree of correlation. This 
apparent reln.tion between the water content of snow in 
the Swiftcurrent basin and the summer rainfall a t  Hnvre 
is espressed by the equation R=0.177W+4.74, where R 
equals inches of rainfall and W is the wat’er content of 
the snow cover in inches. The ecluat,ion representing the 
best fit line for Geraldine is R=O.1551V+4.05. 

The reliability of this correlation is limited by the 
paucity of data available over a short period of record, 
12 years. To be conclusive, a much longer period should 
be studied. Snow surveys are n coniparatively recent 
innovation, but their value is rapidly being recognized. 

By means of these two equations the summer rainfall 
a t  Havre and Gerddine was calculated for the 12-year 
period from the water-content measurements in the Swift- 
current basin and the estimated amount compa.red with 
the actual rec,ord as in figures 3 and 4. The similarity 
of the curves is remarkable. It may be noted that the 
slope of the estimated curves, that is, up or down, showing 
inc,rease or decrease as compared with the previous year, 
is correct 11 out of 12 years for Gerddine and 10 out of 
12 years for Havre, and that a forecast of “above normal’’ 
or “below normal” would have been correct in 10 out of 
the 12 years for each place. 

But this correla.tion does not necessarily prove a direct 
ca.usa1 relationship between t’he snow cover on the St. 
h h r y  River watershed and t,he summer rainfall at Havre 
a.nd Geraldine. Perhaps they are associated as kindred 
effects of a third factor, or perhaps they show similar 
variations because affected by ohher similar though dis- 
tinct underlying influences. This, however, does not de- 
tract from the practical value of t,he apparent relationship. 


